M. Math 1st year Measure Theory Final Exam Page 1 of 7.	November 24th, 2005	Name (Please Pr	int)	
	M. Math 1st year	Measure Theory	Final Exam	Page 1 of 7.

Your Signature _____

This is a closed book exam. There are six problems. Maximum possible score is 100 points. Show all your work. Partial credit will be given for partial solutions. Correct answers with insufficient or incorrect work will not get any credit.

1.	(15)	
2.	(15)	
3.	(20)	
4.	(20)	
5.	(20)	
6.	(10)	
Total.	(100)	

Score

Extra sheets attached(if any):_____

This is a closed book exam.

If you are using a Theorem then please state it clearly.

Do not assume any results from the homework assignments.

November 24th, 2005	Name (Please Pri	nt)	
M. Math 1st year	Measure Theory	Final Exam	Page 2 of 7.

1.(a) Let $f : [a, b] \to \mathbb{R}$. What is meant by saying that "f has Bounded Variation". Give examples of two functions, one which has Bounded Variation and the other which does not.

(b) Let Ω be a non-empty set and \mathcal{F} be a collection of subsets. Suppose $\Omega \in \mathcal{F}$ and that $A, B \in \mathcal{F}$ implies that $A \cap B^c \in \mathcal{F}$ show that \mathcal{F} is an algebra.

2. Let X be a random variable on the probability space (Ω, \mathcal{F}, P)

- (a) Show that X is integrable if and only if $\lim_{n\to\infty} \int_{|X|>n} |X| dP = 0$.
- (b) Suppose $X \ge 0$, then show that $E(X) = \int_0^\infty P(X \ge x) dx$.

November 24th, 2005	Name (Please Prin	nt)	
M. Math 1st year	Measure Theory	Final Exam	Page 4 of 7.

3. Let h_n, f_n, g_n be a sequence of integrable functions on $(\Omega, \mathcal{B}\mu)$ with $h_n \leq f_n \leq g_n$ for all n. Suppose also $h_n \to h, f_n \to f$ and $g_n \to g$ on Ω . Show that if the h_n 's and the g_n 's are integrable and if $\int h_n d\mu \to \int h d\mu$ and $\int g_n d\mu \to \int g d\mu$, then $\int f_n d\mu \to \int f d\mu$

November 24th, 2005	Name (Please Prin	nt)	
M. Math 1st year	Measure Theory	Final Exam	Page 5 of 7 .

4. Consider two measure spaces (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) , where X = Y = [0, 1], $\mathcal{M} = \mathcal{N} = \mathcal{B}_{[0,1]}$, and μ is Lebesgue measure and ν is counting measure. Let $D = \{(x, x) : x \in [0, 1]\}$ be in the diagonal in $X \times Y$. Decide which (or if all) of the hypothesis of Fubini's Theorem are satisfied by the function $f = 1_D$.

November 24th, 2005	Name (Please Prin	nt)	
M. Math 1st year	Measure Theory	Final Exam	Page 6 of 7.

5. Let $\mathcal{B}_{\mathbb{R}}$ be the Borel σ algebra on \mathbb{R} and \mathcal{B} be any σ -algebra on \mathbb{R} such that every continuous function $f : \mathbb{R} \to \mathbb{R}$ is $(\mathcal{B}, \mathcal{B}_{\mathbb{R}})$ measurable. Then show that $\mathcal{B} = \mathcal{B}_{\mathbb{R}}$.

6. Let $(\Omega, \mathcal{B}, \mu)$ be a finite measure space. Let $f \in L^{\infty}(\mu)$. Let $\alpha_n = \int_{\Omega} |f|^n d\mu$. Show that

$$\lim_{n \to \infty} \frac{\alpha_{n+1}}{\alpha_n} = \parallel f \parallel_{\infty}$$